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Abstract—Network Function Virtualization (NFV) coupled
with Software Defined Networking (SDN) creates new opportu-
nities as well as substantial challenges such as increased Service
Function Chain (SFC) latency and reduced throughput. In this
paper, we present HybridSFC, a framework that explores the
opportunities of parallel packet processing at both traffic level
and Network Function (NF) level. It incorporates innovative
control and data-plane mechanisms that partition and convert a
sequential chain into several (finer-grained) SFClets that can be
executed in parallel on multiple cores and servers. HybridSFC is
practical in that it can handle NFs spanning multiple servers and
requires no modifications to existing NFs. Experiments show that
HybridSFC reduces latency up to 51% with 7% CPU overhead,
and a 1.42×-1.87× improvement in overall system throughput.

I. INTRODUCTION

Network Function Virtualization (NFV), coupled with Soft-
ware Defined Networking (SDN), promises to revolutionize
networking by allowing network operators to dynamically
manage networks. Operators can create, update, remove or
scale out/in network functions (NFs) on demand [21], [36],
[35], construct a sequence of NFs to form an Service Function
Chain (SFC) [10], and steer traffic through it to meet service
requirements [22], [23], [24]. However, virtualization and
“softwarization” of NFs pose many new challenges [11]. In
particular, traffic traversing virtualized NFs suffers from re-
duced throughput and increased latency, compared to physical
NFs [13], [22], [23], [24]. The flexibility offered by SDN and
NFV enables more complex network services to be deployed,
which will likely lead to longer SFC. As the length of an SFC
(i.e., number of NFs) increases, so does its overhead.

Exploring parallelism to reduce packet processing latency
and increase the overall system throughput is a classical
approach that is widely used in networked systems. In terms
of NFV, parallelism is first explored in ParaBox [38] and later
in NFP [31] by investigating order independence of certain
NFs within an SFC. Both efforts focus on parallelizing packet
processing for SFCs on a single (multi-core) server. Real-
world NFs, on the other hand, will likely be operating in
edge clouds or data centers with clusters of servers. How
to effectively utilize multiple servers to reduce per-packet
processing latency and increase the overall system throughput
is the main problem we explore.

In this paper, we present HybridSFC, a parallelization
framework to accelerate SFCs across multiple servers. Hy-
bridSFC converts a sequential SFC into multiple SFClets (i.e.,

SFC applied over a subset of traffic streams) to better explore
traffic-level parallelism, and parallelizes NF processing across
multiple cores/servers for NF-level parallelism. HybridSFC
controller calculates optimized paths for each hybrid SFClet 1

and programs both software and hardware switches to enable
parallelism across NFs running on multiple physical servers.
HybridSFC employs a customized data plane for parallel
processing without modifying the implementation of existing
NFs. Based on the instructions from controller, HybridSFC
data plane mirrors packets to parallelizable NFs and then
merges their outputs. HybridSFC ensures the correctness of
SFC processing, i.e., traffic and NF states changed after
each SFClet processing are identical to what would have
been produced by the original sequential SFC. We make the
following contributions:
• We identify the challenges in SFC parallelism (§ II), and
design HybridSFC, a framework to support SFC parallelism
across multi-core servers (§ III).
• We present HybridSFC controller (§ IV) to enable both NF
level and traffic level parallelism. In addition, we present key
building blocks in HybridSFC data plane, and explore the
placement choices for a high-performance data plane (§ V).
• To demonstrate the effectiveness of HybridSFC (§ VI), we
implement a prototype and evaluate it via both synthetic SFCs
generated by simulation, and practical SFCs constructed by
off-the-shelf open-source and production-grade NFs.

II. CHALLENGES AND RELATED WORK

We highlight the key challenges in accelerating SFC pro-
cessing with parallelism in a cluster of multi-core servers. We
also briefly discuss related work.

A. NF Dependence in NF-level Parallelism

The basic premise of SFC NF-level parallelism [38], [31] is
that given a pair of NFs, if the operations of two NFs applying
to the same traffic stream do not conflict, then they can be
executed in parallel. For example, if both NFs simply perform
read operations, they can be parallelized. If one performs a
read operation and another performs a write operation, they
can be parallelized if and only if they do not operate on the
same header field. Likewise, if both perform write operations
(including inserting/removing headers/bits in the packet), they

1A hybrid SFClet consists of both parallel segments (with NFs processing
in parallel) and sequential segments (with NFs processing sequentially).
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cannot be executed in parallel if the modified data portions
(header or payload) potentially overlap. Therefore, awareness
of NF semantics is required for SFC NF-level parallelism.
NF semantics are defined as any operation applied on packets
(e.g., modifying packet header/payload, dropping packets, etc.)
There are two general approaches to infer the semantics of an
NF: offline modeling and online monitoring. In offline model-
ing, the manually created model [8], [14] is known to be error-
prone. If NF source code is available, NFactor [34] is able to
synthesize NF semantics by performing code refactoring and
program slicing. SymNet [30] proposes a symbolic execution
friendly language to extract NF semantics. On the other hand,
online monitoring (e.g., SIMPLE [27]) adopts similarity-based
correlation algorithms to infer the packet modifications applied
by an NF through the comparison of its incoming and outgoing
packets. Since inferring NF semantics has been extensively
explored in the literature, we assume that semantics of each
NF in target SFC are available.

B. Traffic-Level Parallelism across Multi-core Servers

Stateful NFs introduce coupling among flows for efficient
packet processing. In other words, one cannot blindly perform
“traffic-level parallelism” by routing packets independently
to multiple servers for parallel packet processing and load
balancing. Thus, it is important to understand the operator
intent [26]. For example, an IDS is configured to detect DoS
attacks on a per-host basis. When scaling out NF for scalability
and performance, we have to forward traffic generated from
the same host to the same NF instance. In a cluster of multi-
core servers, there are many factors to consider when deciding
whether and how to parallelize an SFC. For example, it
might be beneficial to execute an SFC entirely within a single
server, or even within a CPU core – run-to-completion [25],
[16] to avoid network latency or core switching overheads.
However, it will hinge on our ability to load balance the traffic
among these servers. The flow coupling of stateful NFs makes
this a nontrivial task; in addition, different types of traffic
going through the same SFC may incur varying processing
overheads; interference among NFs running on the same
machine also jeopardizes SFC performance [32]. In contrast,
SFC execution can span over multiple servers as a pipeline.
However, context switching among CPU cores and additional
network latency for steering traffic through servers may mit-
igate the gain in parallel packet processing among multiple
servers. Which options are the best in terms of the SFC
processing latency and overall system throughputs will depend
on individual NF performance, traffic volumes, server and
switch capabilities, and network bandwidth. Moreover, real-
world operational constraints of NF placement (e.g., security
concerns requiring some third-party NFs be placed on certain
servers) further limit the options of SFC parallelism. Last but
not the least, in designing mechanisms for accelerating SFC
processing in a multi-server environment, it is important to
“co-design” the rules in both hardware and software switches
for splitting and steering traffic appropriately. HybridSFC aims
at addressing these challenges for accelerating SFC processing.

C. Related Work

SFC optimization has attracted a flurry of research inter-
ests in recent years. NFV frameworks such as NetVM [13],
BESS [12], [1], and Metron [16] utilize DPDK and smart-
NIC/hardware rule offloading to speed up SFC packet process-
ing on commodity servers, whereas OpenBox [7] decomposes
vNFs into re-usable modules to further speed up the packet
processing pipeline. Flurry [36], NFVnice [21], and E2 [25]
exploit flow-level traffic parallelism to improve scalability of
NFV. More closely related to our work, ParaBox [38] and
NFP [31] utilize parallelism for accelerating an SFC within
a single multi-core server. As discussed above, availability
of multiple servers not only offers more opportunities for
parallelism, but also imposes additional constraints. These
issues are not considered in the previous studies, which are
the focus and contribution of our paper. The statefulness of
NFs is a major hurdle in the SFC optimization that have
been studied in many papers [28], [9], [15], [20], [29], [33],
[19]. We employ the insights from these studies for converting
a SFC into multiple hybrid SFClets to better exploit both
traffic and NF-level parallelism over multi-cores and across
multiple servers. In addition, unlike [37], [31], [25], [7], [16],
HybridSFC can accommodate open-source and proprietary
NFs with no NF modifications.

III. ARCHITECTURAL OVERVIEW

In this section, we present the system architecture and
introduce the key components of HybridSFC.

Implementing parallel packet processing is by no means
straightforward. First, HybridSFC must guarantee the cor-
rectness of generated chain by carefully analyzing the order
dependency of NFs in a chain. The dependency relies not
only on the semantics of NFs, but also their configurations
and operational rules. Second, HybridSFC needs to automati-
cally program both virtual and hardware switches by creating
appropriate data-plane forwarding rules to perform parallel
packet processing across multiple servers. Third, the data plane
functions of HybridSFC to support SFC parallelism should be
lightweight, avoiding adding too much processing overhead.
Finally, to enable incremental deployment, HybridSFC should
not require modifications to existing NFs.

HybridSFC consists of a controller and a data plane running
on a cluster of multi-core servers equipped with DPDK.
The primary role of the controller is three-fold: i) taking
each SFC expressed by a network operator, together with the
configuration policies and operational rules associated with
each NF in the chain, the controller decomposes and refactors
it into multiple SFClets to explore traffic-level parallelism; ii)
based on order dependency analysis, the controller converts
sequential SFClets into hybrid ones to explore NF-level paral-
lelism; and iii) based on the knowledge about NF performance
profiles and placement constraints as well as information about
server and network resources, the controller schedules the
execution of each SFClet to maximize the overall SFClets
processing throughput and reduce latency. In contrast, the
HybridSFC data plane engine consists of three key building
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blocks, traffic steering (which splits, distributes and also load-
balances traffic to appropriate NFs), mirror (which duplicates
packets for parallel processing), and merge (which combines
and processes duplicated packets after parallel processing)
modules. The primary role of data plane is to execute hybrid
SFClets based on the forwarding and processing rules installed
by the controller.

IV. HYBRIDSFC CONTROLLER

In this section we present the design of the HybridSFC
controller which comprises three key modules as shown in
Fig. 1, and describe corresponding algorithms.
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Fig. 1: Overview of HybridSFC controller

A. SFC Decomposition Analysis

Given an SFC – expressed as a network operator or service
provider intent – consisting of a sequence of vNFs with config-
uration and policy rules to be deployed, the controller will first
invoke the Service Chain Decomposition module. This module
is to decompose an SFC into multiple “SFClets”. As discussed
earlier, the challenges lie first in modeling and representing
NF semantics, and then synthesizing diverse NF configuration
and policy rules. To tackle the challenges, we employ a similar
technique used in Header Space Analysis [18], [17] to analyze
the configuration and policy rules of each NF (commonly
expressed as “match-action” like rules similar to those used
in SDN), keep track of the possible header transformations,
and synthesize them across the NFs. Based on such analysis,
we then decompose the original SFC into a series of SFClets.
Our current approach can only synthesize L2-L4 header fields.
We will explore NF semantics analysis that goes beyond L4
headers [10] as future work.

B. Hybrid Chain Construction Algorithm

Given SFClets output by decomposition module, hybrid
chain construction algorithm examines the semantics (e.g., op-
erations and state variables) of each NF in an SFClet, analyzes
the order dependency and determines whether it is safe to
execute certain NFs in parallel by converting the sequential
SFClet into a hybrid one. We present a heuristic algorithm
(Alg. 1) for this analysis. The basic idea is to parallelize two
consecutive NFs based on their order dependency constraints,

Algorithm 1 Hybrid Chain Construction Algorithm

Variable Definition: (a) SC: sequential chain (input); (b)
NF Ops: operations of NF (input); (c) NF Seg: current
NF segment; (d) Agg Ops: aggregated operations of
current segment; (e) HC: hybrid chain (output)

1: procedure CONSTRUCT HYBRID CHAIN
2: initiate NF Seg,Agg Ops,HC
3: while NFi in SC do
4: NF Ops ← Fetch Ops(NFi)
5: if Independent(NF Ops, Agg Ops) then
6: NF Seg.push(NFi)
7: Agg Ops.push(NF Ops)
8: else
9: HC.push(NF Seg)

10: NF Seg.clear();Agg Ops.clear()
11: NF Seg.push(NFi)
12: Agg Ops.push(NF Ops)

13: HC.push(NF Seg)

aggregate their operations, and take their combination as a
“bigger” NF for further processing. If NFi is parallelizable
with the current NF segment NF Seg (i.e., having indepen-
dent ordering which is derived from their operations), we push
it into NF Seg and aggregate its operations into Agg Ops
(lines 6-7). Otherwise, we push NF Seg into the output
hybrid chain HC as a completed segment, clear NF Seg
and Agg Ops, and then push NFi into NF Seg and its
operations into Agg Ops for the order-dependency check with
the next NF (lines 9-12).

C. Programming HybridSFC-enabled Networks

Given a hybrid SFClet, HybridSFC controller takes the
performance profiles of each NF, server, network resource pro-
files and constraints (NF placement policy considerations) to
decide its execution, weighing various options by considering
performance benefits and service level objectives/agreements.
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Fig. 2: Traffic Distribution Example.

Consider the example shown in Fig. 2 where the placement
of NF instances has already been determined. Given a new
SFC, IPS → Network Monitoring (NM) → LB, where NM and
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LB can be executed in parallel. This yields multiple options
for traffic distribution and steering between the NFs with
possibly different network bandwidth and latency implications:
1) IPS1,3 → NM2 → LB2,3; 2) IPS1,3 → LB2,3 → NM2;
3) IPS1,3 → NM2||LB2,3, where we use || to denote parallel
execution, and the subscripts are server id.

Our SFClet execution algorithm consists of four steps: 1)
extract common NF subsequence between target SFClet and
NF instances running on each server (e.g., < IPS >1,
< NM → LB >2, < IPS → LB >3, etc.); 2) compute
possible path combinations that meet the target SFClet pro-
cessing requirements (e.g., IPS1NM2LB3, IPS3NM2LB3,
IPS1NM2LB2, etc.); 3) find the paths with minimal number
of servers (e.g., IPS3NM2LB3, IPS1NM2LB2, etc.); 4)
select the paths with the most parallelizable NF segments (e.g.,
IPS1NM2LB2, etc.) on the same servers. The intuition be-
hind this algorithm is that inter-processor/core communication
within a single server is faster than across multiple servers, and
parallelized NF execution reduces processing latency.

We remark that one SFClet execution solution that yields
better performance at the current moment may no longer be the
case later when the traffic load increases or system resources
change (e.g., due to failures). We leave it as a future work
to adaptively adjust traffic distribution and dynamically scale
out/in NF instances in response to changes in system resources
and NF/server/network failures.

V. HYBRIDSFC DATA PLANE

We present the data-plane design of HybridSFC, focusing
on the mirror and merge modules and their placement.

A. Mirror and Merge Modules

We show the main building blocks and data structures of the
HybridSFC data plane in Figure 3. The data-plane execution
engine enforces SFC parallelism based on the forwarding and
processing rules installed by controller. We first present the
design of data plane within a single server, and then present
the multiple server case.

Before presenting the details of mirror and merge modules,
we first describe two supporting tables, Flow Steering table
and Packet State table. The Flow Steering table contains
information for packet processing of SFC segments consisting
of NFs residing in the server. Each entry represents an SFC
segment, e.g., {A,{B,C}}, along with the corresponding NF
operations denoted as OPS (see § IV-B), and FID which shows
the flow (in terms of a layer 2–4 header match rule) to which
the SFC segment applies. Controller installs these entries in
the software switch, and then mirroring module uses the Flow
Steering entries to steer packets along NFs, duplicating them if
needed. For an example SFC segment {A,{B,C}}, mirroring
module duplicates packets processed by A, and then sends
them to both B and C for parallel processing.

The Packet State table is primarily used by the merge
module and contains four fields: 1) PID (packet ID), 2) PKTR
(reference pointer to the memory address of the original
packet), 3) BUF (packet buffer for saving the intermediate
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Fig. 3: Overview of HybridSFC data plane

results), and 4) CNT (counter array for parallel SFC segments).
The unique PID keeps track of packets that are processed by
parallelized NFs. The CNT records the number of parallelized
NFs in each segment. For instance, CNT for {A, {B, C}} is
{1, 2}. The count decrements by one after a packet processed
by a parallelized NF. Merge operation is triggered when the
count reaches zero.

In the merge operation, we treat a data packet as a sequence
of bits, namely a {0|1}∗ string. If an NF in a processing
segment adds L extra bits into packets, we insert a string of L
zeros at the corresponding location in the outputs from other
NFs before the merge. In a similar vein, if an NF removes L
bits from packets, we delete the same bits from the outputs of
other NFs. Moreover, if packets are dropped, a no-op packet
is sent back to merge module.

Assume PO is the original packet and there are two NFs A
and B in the chain. Assume that PA and PB are respective
outputs from NF A and B. The packet output after two NFs
will be PO ⊕ PA ⊕ PB . Note that correctness is guaranteed
as two NFs do not modify the same portion of a packet.
Finally, we recalculate the checksum before steering/mirroring
the packet to the next NF(s) – either residing within the same
server or different servers.

B. Placement of Mirror and Merge

When parallelizing packet processing for NFs spanning
multiple machines, a natural question is where to place mirror
and merge functions. For SFC parallelism within a server,
mirror and merge functions are placed in software switches,
as in ParaBox [38], or merge function can run as a dedicated
container in NFP [31]. However, when considering an SFC
spanning multiple servers, if we naively place mirror and
merge modules on arbitrary servers, we may not only waste
bandwidth, but also potentially increase the SFC latency.

For example, consider an SFC: NAT → FW → IPS →
WANX, and suppose we can parallelize the packet processing
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for NAT, FW and IPS, but not WANX. Further, assume that
NAT and FW are placed on server 1, while IPS and WANX
are on server 2. If we place the mirror and merge functions on
server 1, the mirror function has to duplicate packets to IPS on
server 2. After IPS examines the packets, it has to send them
back to server 1 for the merge, and then back to server 2 again
for the last-hop WANX processing. As a result, placing mirror
and merge functions on server 1 ends up increasing latency.
Instead if we place mirror and merge intelligently, i.e., mirror
on server 1 and merge on server 2, then we can reduce the
extra traversal of packets caused by placing both mirror and
merge on same server.

Hence, when parallelizing SFC processing across multiple
servers (with NF placement constraints), the placement of
mirror and merge functions is crucial. Using two parallelized
NFs placed on two servers (one on each) as an example, below
are several design choices for the placement. (a) decoupling
mirror and merge into different software switches: this place-
ment strategy can, to certain extent, avoid sending packets
back-and-forth between the two servers, but there will still be
two outgoing flows from server 1 and two incoming flows
into server 2 (in contrast, processing two NFs sequentially
generates only one incoming and outgoing flow at each server).
(b) flexibility of putting mirror on hardware switches and
merge on software switches: this placement can reduce the
number of outgoing flows from server 1; it still cannot improve
the situations (two incoming flows) at server 2. This design
choice is what has been currently implemented in HybridSFC.
(c) flexibility of putting both mirror and merge on hardware
switches: this is the ideal case to achieve reduced latency with
the same bandwidth utilization as the sequential chain.

Although it is feasible to place the mirror function on
hardware switches, it is challenging to design and implement
merge function even on programmable hardware switches. The
reason is that the merge function requires relatively complex
logic and needs extra memory to store intermediate results.

VI. EVALUATION

We evaluate HybridSFC through a prototype implementa-
tion, and show results for the following scenarios.
• In benchmarking experiments, HybridSFC performance is
better compared to existing solutions (Figure 5).
• In realistic chains, HybridSFC reduces SFC latency in
various setups (Figure 6).
• HybridSFC improves packet processing performance in
multi-server scenarios (Figure 7, Figure 8).
• The overhead introduced by HybridSFC is manageable
(Figure 9, Figure 10).
Experimental Setup. The prototype uses an Openflow-
enabled switch with 48 10Gbps ports. We connect six servers
to the switch, four of which are equipped with two 10Gbps
links, and the other two are equipped with four 10Gbps links.
Each server uses Intel(R) Xeon(R) CPU E5-2620 with 6 cores.
On each server, one core is dedicated to HybridSFC data plane.
The HybridSFC controller runs on a standalone server that is
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Fig. 4: Experiment Setup

connected to the management port of the switch on a separate
1Gbps control network.

Berkeley Extensible Software Switch (BESS) [1] is used
for implementing data plane logic. Regarding the control
plane, we have implemented a controller and a local daemon
in Python using Flask framework. Table entries are stored
in pickleDB which is a light-weight key-value store. The
HybridSFC controller communicates with a Ryu OpenFlow
controller through its RESTful APIs. Packet size in experi-
ments is 64B, and Pktgen-dpdk [6] is used as traffic generator.
NFs in Experiments. Each NF is running in either a Docker
container or a KVM-based VM. We dedicate a CPU core to
each container or VM. We use seven types of NFs: Layer 2
forwarder (L2FWD), NAT, FW, IDS, Monitor, Load Balancer,
and VPN gateway. L2FWD is used for NF benchmarking. For
NAT and FW running in VM, we use product-level NFs with
real operational rules from a carrier network. We also use
open-source iptables running in containers as NAT and FW.
We use BRO [2] as IDS, Nload [4] as Monitor, Linux Network
Load Balancing [3] as Load Balancer, and OpenVPN [5]
as VPN gateway in the experiments. Moreover, we create
customized L2FWD, NAT, and FW to invoke BESS zero-
copy API and OpenNetVM zero-copy API respectively for
benchmarking purpose.

A. HybridSFC Performance

As a benchmarking experiment, Figure 5 shows the la-
tency comparison among sequential SFC, hybrid SFC by
HybridSFC, and OpenNetVM [37]. L2FWD is used as NF
instance, and SFC length is increased from 1 to 6. We
observe that the processing latency in parallel processing
is significantly reduced compared to sequential processing,
and both the sequential and parallel chains perform better
than OpenNetVM. Moreover, the latency reduction rises from
13.04% to 50.98% as SFC length increases.

Table I presents sequential and corresponding hybrid chains
generated. NFs in () mean that they can be processed in
parallel, and NFs separated by || mean that they are on
different servers. HybridSFC can reduce the SFC latency by
up to 31.7% as shown in Figure 6.
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TABLE I: Service Function Chains Used in the Experiments

Index Deployed Chain in One Machine Hybrid Chain in One Machine Deployed Chain in Two Machines Hybrid Chain in Two Machines
1 {IDS, NAT, FW} container {(IDS, NAT, FW)} {IDS ‖ NAT, FW} container {(IDS, ‖ NAT, FW)}
2 {IDS, NAT, FW} vm {(IDS, NAT, FW)} {IDS ‖ NAT, FW} vm {(IDS, ‖ NAT, FW)}
3 {VPN, Monitor} vm, {FW, LB} container {(VPN), (Monitor, FW), (LB)} {VPN, Monitor} vm ‖ {FW, LB} container {(VPN), (Monitor ‖ FW), (LB)}
4 {NAT, FW, IDS, LB} vm {(NAT, FW, IDS), (LB)} {NAT, FW ‖ IDS, LB} vm {(NAT, FW ‖ IDS), (LB)}

1 2 3 4 5 6
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Fig. 9: Breakdown of controller
processing time
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Fig. 10: Overhead during NF Scal-
ing

Next, we investigate the impact of NF placement spanning
over multiple servers. In linear placement, three types of zero-
copy NFs (L2FWD, NAT, FW) are loaded into each of the
four servers (12 instances in total); in random placement, the
12 NF instances are placed randomly. We configure traffic to
go through four SFCs (L2FWD→NAT→FW, L2FWD→NAT,
L2FWD→FW, NAT→FW). 500 flows in each SFC are gener-
ated. We present the results of HybridSFC, random distribution
approach, and the worst case. The aggregated throughput is
shown in Figure 7, and latency result is shown in Figure 8.
HybridSFC achieves 1.74x-1.87x throughput improvement in
NF linear placement while 1.42x-1.48x throughput improve-
ment in NF random placement. Similarly, we can also observe
latency benefits of HybridSFC compared with others.

In order to verify the correctness of HybridSFC, we always
send traffic through sequential SFCs, replay the same traffic
in HybridSFC, and then compare the packets at receiver side
and network states maintained in NFs using log information.

B. HybridSFC Overhead
To understand the overhead introduced by HybridSFC,

especially the data plane logic, we measure the CPU cycles
of processing each packet in benchmarking experiments which
uses L2FWD as NF. CPU cycles per packet are increased with
the SFC length in both sequential and hybrid chains. However,

CPU cycles per packet in HybridSFC parallel processing is up
to 7% more than the sequential SFCs.

The HybridSFC controller needs to calculate appropriate
rules and install into hardware and software switches. Thus,
controller overhead is segmented into three parts: 1) collecting
active flows; 2) calculating steering rules; 3) installing steering
rules. We create 9 scenarios and manually trigger topology
update which forces the controller to recalculate traffic distri-
bution rules. We measure each overhead segment, as shown in
Figure 9. We observe that the overhead of calculating steering
rule depends on the number of chains in SFC configuration,
while the overhead of installing steering rules depends on the
number of active flows in existing network. Since controller
only recalculates steering rules when topology is changed, the
costly operation is affordable.

During NF scaling, we want to further investigate the
overhead and observe how throughput and latency change.
We deploy two servers, one of which only runs an IDS,
while the other one runs an IDS and a L2FWD. We then
generate traffic going through IDS → L2FWD. As shown in
Figure 10, the throughput of the system increases immediately
and reaches the bottleneck of IDS processing. After that,
HybridSFC controller gets notification from local daemon
running on the NF server and uses a sub-optimal path (utilizing
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IDS on the other machine too). The system throughput goes
up because two IDS instances are utilized, but median latency
increases as well because certain traffic is detoured into a
sub-optimal path which spans over two servers. At the fifth
second, we spin up another L2FWD in the server running
only one IDS, and trigger the controller to recalculate the
traffic distribution rules. In our current implementation, after
controller recalculates traffic distribution rules, it will refresh
existing rules. This will cause temporary system unavailability,
and thus system throughput drops down rapidly, but recovers
quickly. This is a trade-off of NF performing scaling without
NF modification, and we have been exploring an effective
mechanism of conquering it. Now both SFClets are optimized,
so latency drops.

VII. CONCLUSIONS

In this paper, we have presented HybridSFC, a paralleliza-
tion framework to accelerate SFC across multi-core servers.
In contrast to existing approaches, HybridSFC performs both
NF and traffic level parallelism without NF modification.
HybridSFC takes into account the configurations and opera-
tional rules of NFs to create more parallelization opportunities.
HybridSFC supports not only NFs within a single server, but
also those spanning multiple machines, by distributing traffic
over optimized SFCs. The data plane of HybridSFC runs
as an extension of BESS to achieve high performance and
programmability. Our evaluation demonstrates that HybridSFC
can significantly improve SFC performance with manageable
overheads under various realistic scenarios.
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